International Journal of Engineering Sciences & Research **Technology**

(A Peer Reviewed Online Journal) Impact Factor: 5.164

Chief Editor Executive Editor Dr. J.B. Helonde Mr. Somil Mayur Shah

Website: www.ijesrt.com and a state of the mail: editor@ijesrt.com Mail: editor@ijesrt.com

[Traore et al., 10(6): June, 2021] Impact Factor: 5.164 ICTM Value: 3.00

ISSN: 2277-9655

IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH **TECHNOLOGY**

DETERMINATION OF THERMAL CONDUCTIVITY OF TOW PLASTER AND KAPOK PLASTER MATERIALS BY NUMERICAL METHOD: INFLUENCE OF THE HEAT EXCHANGE COEFFICIENT IN TRANSITIONAL REGIM Papa Touty Traore*1, Babou Dione¹, Mame Fadiame Thiam¹ & Dame Diao¹ *1 Physics department, Cheikh Anta Diop University, Senegal

DOI: https://doi.org/10.29121/ijesrt.v10.i6.2021.2

ABSTRACT

This article presents a numerical method for determining the thermal conductivity of local materials, kapok plaster and tow plaster. It consists of heating the front face of a wall made from these two materials and at the same time insulating its rear face. We simultaneously study the curves of the evolution of the heat flux density as a function of time on the rear face and the evolution of the temperature gradient as a function of time between the heated face and the insulated face. Thermal conductivity is obtained when reaching steady state; when the evolution of the heat flux density and the temperature gradient no longer depend on time. The results showed that the theoretical value of thermal conductivity is obtained when the material has reached its equilibrium state. And the values obtained for different values of the convective exchange coefficients are appreciably equal to the experimental value.

KEYWORDS: Conductivity-Numerical method-heat exchange coefficient- Transitional regim.

1. INTRODUCTION

The thermal conductivity of local materials is an important thermal property that governs the transfer of heat flow. The complexity of the materials makes its thermal conductivity dependent on physical and chemical properties, such as water content, porosity, density, texture and mineral composition of the material [1]. Different empirical models have been proposed for estimating the thermal conductivity of materials. However, these models are mainly obtained from data from laboratory experiments by measurement techniques, including steady-state methods such as shielded hot plate method [2], transient methods including single line heat source probe [3,4]. and the double probe heat pulse method [5-7], the impulse method of Flash [8], the method of Giovanny [8], the method of marshal and Devisme [9] the method of the hot wire.

In this work we propose a method for determining thermal conductivity. Finally for the validation of this method on the application for kapok plaster and tow plaster materials [10, 11].

2. MATERIALS AND METHODS

A material of thickness L is heated on its front face and the rear face is insulated (it is assumed that there is no exchange with the interior environment) then. We simultaneously study the evolution curves of the heat flux density as a function of time on the rear face and the evolution of the temperature gradient as a function of time between the heated face and the insulated face.

[Traore et al., 10(6): June, 2021] Impact Factor: 5.164 IC™ Value: 3.00 CODEN: IJESS7

ISSN: 2277-9655

Figure 1 Insulated material on the back side

The equation for heat without a heat sink is given by the following expression $\frac{\partial^2 T(x,t)}{\partial T(x,t)}$ 1 $\frac{\partial T(x,t)}{\partial T(x,t)}$ (1) $rac{T(x,t)}{\partial^2 x} - \frac{1}{\alpha} \frac{\partial T(x,t)}{\partial x}$ (1) ∂x (b) (1)

 λ (2) ρc (-) (2)

- α is the thermal diffusivity of the material assumed to be uniform.
- λ is the thermal conductivity of the material
- c the specific heat

Equations (2) and (3) reflect the conservation of heat flux at the surface of the material and equation (4) represents the initial condition. (1)

(2)

(2)

diffusivity of the material assumed to be uniform.

Lead

technological of the material and equation (4) represents

eat
 $= \lambda \frac{\partial T(x,t)}{\partial t} |x = 0$ (3)
 $= \lambda \frac{\partial T(x,t)}{\partial t} |x = L$ (4)

(5)

heat flux density is giv (2)

diffusivity of the material assumed to be uniform.

leonductivity of the material

eat

effect the conservation of heat flux at the surface of the material and equation (4) represents
 $= \lambda \frac{\partial T(x,t)}{\partial t} |x = 0$ (3)
 $= \$

Figure 1 Insulated material on the back side
\nThe equation for heat without a heat sink is given by the following expression
\n
$$
\frac{\partial^2 T(x,t)}{\partial^2 x} - \frac{1}{\alpha} \frac{\partial T(x,t)}{\partial x}
$$
\n(1)
\nWhere $\alpha = \frac{\lambda}{\rho c}$
\n α is the thermal diffusivity of the material assumed to be uniform.
\n λ is the thermal conductivity of the material
\nthe specific heat
\nEquations (2) and (3) reflect the conservation of heat flux at the surface of the material and equation (4) repr
\nthe initial condition.
\n
$$
\begin{cases}\nh_1(T(0,t) - T_{f1}) = \lambda \frac{\partial T(x,t)}{\partial t} |x = 0 \quad (3) \\
h_1(T(L,t) - T_{f2}) = \lambda \frac{\partial T(x,t)}{\partial t} |x = L \quad (4) \\
T(x, 0) = T^0 \quad (5)\n\end{cases}
$$
\nThe expression of the heat flux density is given by:
\n $\phi(x, t, h_1, h_2, \alpha) = -\lambda \frac{\partial T(x,t)}{\partial x}$
\n(f)
\nThe finite difference discretization method applied to the equations allows us to obtain:
\nThe temperatures expressions on the two faces
\n
$$
\begin{cases}\nT_t^{l+1} = AT_t^l + 2PT_s^l + CT_{f1} \quad (7) \\
T_t^{l+1} = BT_t^r + 2PT_{M-1}^l + DT_{f2} \quad (8) \\
T_t^1 = T^0 \quad (9)\n\end{cases}
$$
\nWhere,
\ni is locates the variable space
\nj is the temperature at node i at date j
\nM represents the number of nodes along the space x

The expression of the heat flux density is given by:
 $\phi(x, t, h_1, h_2, \alpha) = -\lambda \frac{\partial T(x, t)}{\partial x}$ (6) $\frac{\partial (x,t)}{\partial x}$ (6)

The finite difference discretization method applied to the equations allows us to obtain:

$$
\begin{cases}\nh_1(T(L, t) - T_{f2}) = \lambda \frac{\partial I(x, t)}{\partial t} |x = L \quad (4) \\
T(x, 0) = T^0 \quad (5)\n\end{cases}
$$
\nThe expression of the heat flux density is given by:
\n $\phi(x, t, h_1, h_2, \alpha) = -\lambda \frac{\partial T(x, t)}{\partial x}$ (6)
\nThe finite difference discretization method applied to the equations allows us to obtain:
\nThe temperatures expressions on the two faces
\n
$$
\begin{cases}\nT_l^{j+1} = AT_l^j + 2PT_2^j + CT_{f1} \quad (7) \\
T_l^{j+1} = BT_l^j + 2PT_{M-1}^j + DT_{f2} \quad (8) \\
T_l^1 = T^0 \quad (9)\n\end{cases}
$$
\nWhere,
\ni is locates the variable space
\nj is the locates the variable temp
\n T_l^j is the temperature at node i at date j
\nM represents the number of nodes along the space x
\nN the number of nodes along time t
\nWe set,
\n $P = \alpha \frac{\Delta T}{\Delta x^2}$ (10)
\n
$$
\frac{\Delta T}{\Delta x^2} \quad (10)\n\end{cases}
$$
\n
$$
E = \frac{\Delta T}{\Delta x^2}
$$
\n

Where ,

- i is locates the variable space
- j is the locates the variable temp
- T_i^j is the temperature at node i at date j
	- M represents the number of nodes along the space x
	- N the number of nodes along time t

We set ,

$$
P = \alpha \frac{\Delta r}{\Delta x^2} \tag{10}
$$

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

[Traore et al., 10(6): June, 2021] Impact Factor: 5.164 ICTM Value: 3.00 CODEN: IJESS7

$$
A = \left[(1 - 2P) - \frac{2h_1 \Delta x}{\lambda} \right] \tag{11}
$$

$$
B = \left[(1 - 2P) - \frac{2h_2 \Delta x}{\lambda} \right] \tag{12}
$$

$$
C = \frac{2h_1 \Delta x}{\lambda}
$$
 (13)

$$
D = \frac{2h_2 \Delta x}{\lambda}
$$
 (14)

The temperature expression inside the wall ,

 $T_i^{j+1} = (1 - 2P)T_i^j + T_{i-1}^j$ (15)

And the flux density expression

$$
\phi_j^i = -\lambda \frac{[T_{i+1}^j(h_1, h_2, \alpha) - T_i^j(h_1, h_2, \alpha)]}{\Delta x} \tag{16}
$$

3. RESULTS AND DISCUSSION

RESEARCHERID

THOMSON REUTERS

TRANSON REUTERS

TRANSON REUTERS
 $= \left[(1 - 2P) - \frac{2h_1 \Delta x}{\lambda} \right]$ (11)
 $= \left[(1 - 2P) - \frac{2h_2 \Delta x}{\lambda} \right]$ (12)
 $= \frac{2h_2 \Delta x}{\lambda}$ (13)
 $= \frac{2(1-\lambda)^2}{\lambda}$ (14)

where $1 \le i \le M - 1$ et $1 \le j \le N$ The thermal conductivity of the plane material based on tow plaster of 5cm thickness is determined by plotting the heat flux density profiles and the temperature gradient, see figures 2 and 3. ΔT_{min} between the front face and the rear face during time and the maximum value of the flux density ϕ_{max} which crosses the material over time

Figure 2

Evolution of the heat flux density and the temperature difference as a function of time; $h1 = 50 W/m^2K$; $h2 = 5W/m^2K$; N=100000; M=100; x=5cm.

Figure 3

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology [16]

EXAMPLE SET AND
 EXAMPLE SET AND DISCUSSED SET AND

ISSN: 2277-9655

Evolution of the heat flux density and the temperature difference as a function of time; $h_1=50 W/m^2K$; $h_2=5 W/m^2K$; N=100000; M=100; x=5cm.

Figures 2 and 3 show the evolution of the heat flux density and the temperature gradient as a function of time. The temperature gradient is positive and reaches a maximum (heat accumulation) for low excitation times then decreases to tend towards a minimum constant value.

The heat flux density gradient increases and tends towards a maximum for sufficiently long excitation times.

We calculate the theoretical value of the thermal conductivity of materials for different values of the front face exchange coefficient from the following relationship:

$$
\lambda_{th} = \frac{\phi_{max}(h_1)}{\Delta T_{min}} \tag{11}
$$

The tables below show the theoretical values of the thermal conductivity of the plaster tow and the plaster kapok for different values of the front face exchange coefficients h_1 [12].

<i>exemplace coefficient in</i>						
h_1 (W/ m ² K)	15	30	45	60		90
$\phi_{max}(W/m^2)$	0.63	0.63	0.63	0.63	0.63	0.63
ΔT_{min}	0.323	0.21	0.20	0.20	0.20	0.20
Theorical values λ_{th}	0.13	0.15	0.1575	0.1575	0.1575	0.1575
Experimental value λ_e	0.15	0.15	0.15	0.15	0.15	0.15

Table1: The theoretical values of the thermal conductivity of the material two plaster under the influence of the front face α exchange coefficient h

Table 1 shows the theoretical values of the thermal conductivity of the material under the influence of the front face exchange coefficient h₁. There is an increase in the value of the theoretical thermal conductivity of the material for coefficients between 15 and $30W/m²$. K For exchange coefficients greater than 30, the theoretical value of thermal conductivity remains constant and equal to 0.1575. 1 .This result shows that the proposed thermal conductivity measurement method is reliable. We calculate the thermal conductivity of the kapok plaster material using the same calculation method.

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology [17]

[Traore et al., 10(6): June, 2021] Impact Factor: 5.164 ICTM Value: 3.00 CODEN: IJESS7

ISSN: 2277-9655

Table2: The theoretical values of the thermal conductivity of the material Kapok plaster under the influence of the front face exchange coefficient h₁

Table 2 shows the theoretical values of the thermal conductivity [13] of the kapok plaster material under the influence of the front face exchange coefficient h1. For exchange coefficients between 15 and 45, the theoretical value of the conductivity [14],[15] is lower than the value experimental value of 0.01. On the other hand, for exchange coefficients greater than or equal to 60, the theoretical value is exactly equal to the experimental value. These exchange coefficients make it possible to reach the steady state; it is the heat conduction phenomena that dominate.
4. CONCLUSION

In this article, we have proposed a method for the thermal determination of the conductivity of plaster tow and Kapok plaster materials. The influence of the exchange coefficient was highlighted. The theoretical values of the acquired conductivity were compared with those acquired experimentally. The results showed that these values are obtained when the steady state has established.

REFERENCES

- [1] Lu, Y.; Lu, S.; Horton, R.; Ren, T. An Empirical Model for Estimating Soil Thermal Conductivity from Texture, Water Content, and Bulk Density. Soil Sci. Soc. Am. J. 2014, 78, 1859–1868.
- [2] Pratt, A.W. Heat Transmission in Low Conductivity Materials. In Thermal Conductivity; Tye, R.P., Ed.; Academic Press: London, UK, 1969; Volume 1, pp. 301–405.
- [3] De Vries, D.A.; Peck, A.J. On the Cylindrical Probe Method of Measuring Thermal Conductivity with Special Reference to Soils. Part 1. Extension of Theory and Discussion of Probe Characteristics. Aust. J. Phys. 1958, 11, 255–271.
- [4] Mondal, S.; Padmakumar, G.P.; Sharma, V.; Singh, D.N.; Baghini, M.S. A Methodology to Determine Thermal Conductivity of Soils from Flux Measurement. Geomech. Geoengin. Int. J. 2015, 11, 73–85.
- [5] Bristow, K.L.; Kluitenberg, G.J.; Horton, R. Measurement of Soil Thermal Properties with a Dual-probe Heat-pulse Technique. Soil Sci. Soc. Am. J. 1994, 58, 1288–1294.
- [6] Kluitenberg, G.J.; Bristow, K.L.; Das, B.S. Error Analysis of the Heat Pulse Method for Measuring Soil Heat Capacity, Diffusivity and Conductivity. Soil Sci. Soc. Am. J. 1995, 59, 719–726.
- [7] Welch, S.M.; Kluitenberg, G.J.; Bristow, K.L. Rapid Numerical Estimation os Soil Thermal Properties for a Broad Class of Heat-Pulse Emitter Geometries. Meas. Sci. Technol. 1996, 7, 932–938.
- [8] Marechal J.C. and Devisme J.M. « Diffusivité thermique des matériaux de construction: Méthode du signal périodique ». Anales I.T.B.T.P n° 357, Janvier 1978.
- [9] A. Degiovanni, M. Laurent. Une nouvelle technique d'identification de la diffusivité thermique pour la méthode " flash ". Revue de Physique Appliquée, 1986, 21 (3), pp.229-237. [3] D.L. Balageas. Nouvelle méthode d'interprétation des thermo grammes pour la détermination de la diffusivité thermique par la méthode impulsionnelle (méthode " flash "). Revue de Physique Appliquee, 1982, 17 (4), pp.227-237.
- [10]K. Ould Cheikh, I. Diagne, M. L. Sow, M. S. Ould Brahim, A. Diouf, K. Diallo, M. Dieng and G. Sissoko. Interpretation of the phenomena of heat transfer from representations of Nyquist and Bode plots - 2013 - Research Journal of Applied Sciences, Engineering and Technology 5(4): 1118- 1122, ISSN: 2040-7459.
- [11][Voumbo, M. L., A. Wareme and G. Sissoko, 2010. Characterization of Local Insulators: Sawdust andWool of Kapok. Res. J. Appl. Sci. Eng. Technol.,2(2): 138-142.

.......................... htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology [18]

[Traore et al., 10(6): June, 2021]

- [12]Y. Traore, I. Diagne, C. Sarr, M. S. Ould Brahim, A. K. Diallo, H. Ly Diallo and G. Sissoko. Influence of thermal exchange coefficient on the heat retention rate of a concrete wall contiguous to a thermal insulation tow-plaster. ARPN Journal of Engineering and Applied Sciences. Vol. 11, N° 5, 2016.
- [13][http://www.chanvre-bio.com/tag/isolation-avec-la-chanvre-bio/
- [14]S.hadi, M.Nishitani A.T. Wijayanta , K .Kurata and H .Takamatsu .Measurement of thermal conductivity and thermal diffusivity of solid materials using a novel stamp sensor :Feasibility study with numerical analysis-Journal of thermal science and technology-vol 7-no 4,2012,pp.536-538.
- [15]Yi .xu , L. Jiang, J. Liu ,Y. Zhang , J. Xu and G.He .Experimant study and modeling on effective thermal conductivity of EPS lightweight concret -Journal of thermal science and technology-vol 11- no 2,2016,pp.1- 13.

